
1

THE DYNAMIC CIPHERS – NEW CONCEPT OF LONG-TERM CONTENT
PROTECTING

Dr. Grzegorz Szewczyk, Central Ostrobothnia University of Applied Sciences
Department of Business And Technology, Chair of Information Systems

Kokkola, Finland, grzegorz.szewczyk@cou.fi

ABSTRACT: In the paper the original concept of a new cipher, targeted at this moment for civil
applications in technology (e.g. measurement and control systems) and business (e.g. content pro-
tecting, knowledge-based companies or long-term archiving systems) is presented. The idea of the
cipher is based on one-time pads and linear feedback shift registers. The rapidly changing hard-
ware and software environment of cryptographic systems has been taken into account during the
construction of the cipher. The main idea of this work is to create a cryptosystem that can protect
content or data for a long time, even more than one hundred years. The proposed algorithm can
also simulate a stream cipher which makes it possible to apply it in digital signal processing sys-
tems such as those within audio and video delivery or telecommunication.

Keywords: Content protection, Cryptosystem, Dynamic cryptography, Linear Feedback Shift Registers, Ob-
ject-oriented programming, One-time pad, Random key, random number generators, Statistical evaluation of
ciphers.

JEL Codes: D83.

1. Introduction

Many companies need to keep data that are very important for them (for example, research

results, technological parameters, lists of customers, other content) secret for a long time; also, data
stored on electronic media (hard disks, CD ROMs). This problem especially concerns organisations
such as knowledge-based companies, travel agencies, and health-care institutions, as well as com-
panies that want to be operators of e-commerce including content and entertainment delivery.

Long-term content protection and archives are today a major challenge for information tech-
nology. Rapidly changing hardware and software environments lead to the situation that informa-
tion ciphered today can be cracked tomorrow because of new, faster computers, or embodied into
software public knowledge and experiences of hackers. This problem particularly concerns content
and sensitive personal data (e.g. property or identification). The best protection of content or ar-
chived data is to make cracking unfeasible. In practice this means that hardware and software em-
ployed for cracking would be much more worth than the information intended to be cracked. We
also have to remember that content protection is related to copyright. So, good protection of content
keeps its authors’ rights, too.

To decrypt effectively stored data, two facts must be known: (1) the decoding algorithm and
(2) the cryptographic key. Modern cryptosystems must be and actually are based on Kerckhoffs'
law: A cryptosystem should be secure even if everything about the system, except the key, is public
knowledge (1) (2). ERIC RAYMOND (3) extends this principle to the support of open source software,
saying: Any security software design that does not assume the enemy possesses the source code is
already untrustworthy; therefore, “never trust closed source”. This results in the conclusion that if
we want to have a secure cryptosystem for long-lasting content and data protection, we have to as-
sume that a hacker knows or at least guesses the algorithm; moreover, he/she can have access to the
open source code being used. However, this needs some cooperation of an insider, but all that we

2

have to do is to be aware that today’s attacks on stored data come rather from the inside of a com-
pany than outside. In addition, social engineering plays a very important role in the disclosure of a
cryptosystem. An interesting discussion on data security threats can be found, for instance, in (4).

Cryptosystems based on symmetric, block algorithms are commonly used for ciphering data
for long-lasting storage. Block based algorithms do encoding using the same key for each part of
information (a block). Taking into account that today pieces of information are large (pictures,
technical drawings, audio, video) there is always enough data for cryptanalysis. The security of
such cryptosystems depends on the length of the cryptographic key. LENSTRA & VERHEUL (5) re-
searched the size of the key. They assumed that the size of the cryptographic key depends primarily
on:

Fig. no. 1. - Secure size of the cryptographic key (block, symmetric ciphers) (5).

1. Life span: the expected time the information needs to be protected.
2. Security margin: an acceptable degree of infeasibility of a successful attack.
3. Computing environment: the expected change in computational resources available to at-

tackers.
4. Cryptanalysis: the expected developments in cryptanalysis.
All considerations have been made from Data Encryption Standard (DES) point of view

what doesn’t exclude commonalty of conclusions. Authors assumed that the only reasonable and
effective attack is the key space exhausting one (“brute-force attack”). Fig. no. 1 presents results of
these researches. Information found in Fig. no. 1 can be interpreted in the following way: if we as-
sume that information should be secure for next 25 years from year 2008, meaning by year 2033, a
key of at least 95 bits long should be selected.

3

Table no. 1.
Average time estimated for a hardware brute-force attack (6)1.

10 4 22,10 [ms] 23:12,116 [min] 4:00:51:05,501 [days] 773,4 [years] 10 14 [years] 10 17 [years]

10 5 2,21 [ms] 02:19,212 [min] 09:48:39,982 [hrs] 77,3 [years] 10 13 [years] 10 16 [years]

10 6 0,22 [ms] 00:13,921 [min] 01:03:38,376 [hrs] 7,7 [years] 10 12 [years] 10 15 [years]

10 7 0,02 [ms] 00:01,392 [min] 05:57,973 [min] 282,5 [days] 10 11 [years] 10 14 [years]

10 8 2,21 [µs] 00:00,139 [min] 39,775 [s] 28,2 [days] 10 10 [years] 10 13 [years]

10 9 0,22 [µs] 13,921 [ms] 3,580 [s] 2,7 [days] 10 9 [years] 10 12 [years]

10 10 0,02 [µs] 1,392 [ms] 0,354 [s] 6,4 [hrs] 10 8 [years] 10 11 [years]

10 11 0,00 [µs] 0,144 [ms] 0,033 [s] 38,2 [min] 10 7 [years] 10 10 [years]

10 12 0,00 [µs] 0,011 [ms] 0,003 [s] 4,0 [min] 10 6 [years] 10 9 [years]

Hardware
Cost LENGTH OF KEY IN BITS

[USD] 40 56 64 80 112 128

Table no. 1 shows how long the key should be in order to protect information of certain value

(the cost of the breaking cipher should be less or equal to the value of protected information). In
years following 2008, the time presented in this table might be less because of Moore’s Law.

1.1 One-time pad and dynamic cryptography

The only secure cipher is the one-time pad. The term "one-time pad" refers to any method of

encryption where each byte of the plaintext is enciphered using one byte of the key stream, and each
key byte is used one time, and then never used again. The key stream for a one-time pad must be a
true-random stream, meaning that every key byte can take any of the values 0 to 255 with equal
likelihood, and independently of the values of all other key bytes. One-time pad encoding can be
usually denoted as

where (i = 0, 1, 2, …) is the i-th character of the plain text, is the i-th byte of the key used for
this particular message, and is the i-th character of the resulting cipher. XOR is the most com-
mon operation used in one-time pad ciphering, but it can be replaced by any other. One-time pad
decoding is actually a similar operation to the encoding (7) and has the following form:

One-time pads were widely used by Soviet Intelligence (GRU) during WWII. There still ex-
ist messages that remained secret even today because the respective keys are missing. There is no
help to use contemporary methods and tools of cryptanalysis for decoding. This information re-
mains secret forever (8). It proves the strongest of one-time pads.

1 Original data in (6) are presented for year 1995. Data in above table reflect situation in year 2008.

4

Fig. no. 2 - The conception of dynamic cryptography.

The practical difficulty of using a one-time pad is that the key bytes cannot be reused. This

means that even for a two-way exchange of messages, each part must have a sufficient supply of
key material at hand so that they cannot run out before more key can be furnished. Keys manage-
ment is also very difficult. Large pieces of information in electronic or traditional form have to be
moved between users which makes such a cryptosystem vulnerable (7).

Looking for practical implementation of one-time pads MARTINEZ (9), for software based
solutions, and RITTER (10), for hardware based solution, proposed new encryption technology called
dynamic cryptography. The idea of this technology is presented on Fig. no. 2. A pseudo-random
numbers generator (PRNG) generates an infinitive sequence of bits. This sequence is used as a one-
time pad for encoding and decoding information. In a sequence of pseudo-random numbers, the
value of each byte after the first several is mathematically derived from the values of a few preced-
ing bytes. Seed (initial sequence) is a secret value that initialises the PRNG. An interesting discus-
sion on problems related to design of cryptographically save PRNG is found in (11) (12).

1.2 Problem

Taking into account the current state of the art in the described area, decisions have been

made to develop original dynamic ciphering algorithm targeted at this moment for civil applications
in areas such as research, technology and business administration. It is assumed that the new cipher
must be able to operate on blocks of variable-length and that Kerckhoffs' law (1) (2) is to be kept in
relation to the class of algorithms only.

The aims of this paper are to present the original conception of the cipher, to open public
discussion, and, finally, to make it possible for the community to carry out its own tests and crypt-
analysis.

Session
Key

BLOCK-1

BLOCK-2

...

BLOCK-N

Message

Primitive Polynomial

Initial Sequence

MASTER
LFSR

Fig. no. 3 - General conception of the KARHU44 ciphering algorithm.

5

2.Algorithm

The general idea of the proposed KARHU44 algorithm is presented in Fig. no. 3. It is based

on the conception of the one-time pad presented in section 1.1. Both formulas found in this section
are used for encoding and decoding respectively. Pseudo-random numbers generators are made
based on Linear Feedback Shift Registers (see section 2.1 for details).

To reach high linear complexity of the cipher it was assumed that each encoding / decoding
round is using an exclusive ciphering sequence of pseudo-random numbers. The encoding / decod-
ing round means either ciphering of different blocks or repeated ciphering of the same block. The
exclusivity of the ciphering sequence results from the configuration of the LFSR (length and tap
sequence) selected at random from the list and from the initial state of the LFSR (cryptographic key
– see section 2.2 for details) generated for each round separately. Further, each block is encoded
sixteen times in a row which ensures a sufficient level of information dissolving.

According to (6) any ciphering algorithm should contain two general ciphering techniques:
substitution and transposition. The substitution is introduced to KARHU44 by means of the XOR
operation on data and an infinitive sequence of bits generated by relevant LFSR.

The transposition technique is implemented in the algorithm by means of bit-mixing opera-
tion that is carried out before and after all XOR operations (see Fig. no. 4). Each mixing operation
uses own mixing table that is created at random. The source of randomness for mixing is a genera-
tor created in the same way like for XOR rounds (LFSR of a round).

The main role in this algorithm is played by the Master LFSR. It is the source of random
numbers for selecting the configuration of other generators and it simulates the time-related element
in the procedure of generating the cryptographic key. The length of the Master LFSR and its tap
sequence is obtained from the session key. However, we should pay attention to the fact that this
generator does not have a direct impact on the ciphering sequence because it acts like a control of
all generators used for ciphering (mixing and xor-ing).

It was assumed that the length of the register of Master LFSR must be at least 160 bits long.
Over the initial sequence session, the key also contains a tap sequence. Construction and generation
methods are described in (13).

After the Master LFSR is initialised based on the session key, the list of LFSR configura-
tions is permutated at random according to the algorithm presented in (14). Then for each round of
encoding / decoding, the configuration of LFSR can be selected and a round key generated. Now,
the LFSR for the current round is ready to use in the ciphering procedure.

2.1 Pseudo-random number generator

Generators of pseudo-random numbers used in this algorithm are made based on linear

feedback shift registers (LFSR) having Fibonacci configuration. Shift register sequences are used in
cryptography for a long time. There is a wealth of theory about them; streams ciphers based on shift
registers have been the workhorse of military cryptography since the beginning of electronics. Ci-
phers made up of shift registers can be easily implemented in digital hardware (6).

6

Primitive Polynomial

Initial Sequence

MASTER
LFSR

Block of plain data

Bits mixing

hash

random
numbers

Data

Data

...

Data

Bits mixing

Block of ciphered
data

Select Primitive
Polynomial

Generate Initial
Sequence ROUND

LFSR

Select Primitive
Polynomial

Generate Initial
Sequence ROUND

LFSR

Select Primitive
Polynomial

Generate Initial
Sequence ROUND

LFSR

Select Primitive
Polynomial

Generate Initial
Sequence ROUND

LFSR

Select Primitive
Polynomial

Generate Initial
Sequence ROUND

LFSR

16x

hash

hash

hash

hash

random
numbers

infinitive
key

infinitive
key

infinitive
key

Fig. no. 4 - Ciphering in Karhu44.

The tap sequence is selected for each LFSR from the list at random. The random numbers

generated by Master LFSR are used for doing selections, generation initial sequences for LFSR of
rounds and in creating bits-mixing tables.

Fig. no. 5 - Linear feedback shift registers in Fibonacci configuration.

The length of registers of LFSR created based on that list varies from 50 up to 607 bits. This

means that the minimum cycle of the register existing in this cryptosystem would be 250 – 1 =
1,125899906842623 * 1015 what makes about 1024 TB. This is also the maximum length of a block
can be processed.

The cryptographic key, supplied during creation, defines the initial state of the generator.
After the initialisation generator is relaxed by generating at least that many bits how long is the reg-
ister.

2.2 Generating of cryptographic key

Cryptographic key being used by KARHU44 algorithm consists of two data: primitive poly-
nomial (taps sequence for LFSR) and initial sequence of the length that results from selected primi-
tive polynomial.

The primitive polynomial is selected at random from the list of 229. List was generated
based on data taken from (6). These sequences were evaluated against uniform distribution of bytes
and bits generated. Selection criteria and methods of evaluating are presented in (15).

7

Initial sequence is generated based on ANSI standard X9.17 (16). The idea of this algorithm
is presented on Fig. no. 5. LSFR generators used in this algorithm are created in the way described in
section 2.1. The initial state for those generators is defined at random with numbers generated by
Master LFSR.

LFSR

LFSR

LFSRTi

Vi

Vi+1

Ki

Fig. no. 5 - Cryptographic key generating standard ANSI X9.17

The time related element Ti is generated also by Master LFSR. Secret vector Vi is initialised

with the session key (new value of this vector Vi+1 overrides the old one Vi). The resulting stream Ki
is the cryptographic key for the encoding / decoding round.

2.3 Level of security

There are several possible attacks on LFSR based stream ciphers. Good review of those
methods can be found in (6). All of those attacks concern such ciphers that are made up of a few
LFSRs but configuration (length and tap sequence) of component registers is constant. In case of
the cipher KARHU44, the situation is different. The configuration of LFSR used for generating of
encoding sequence is constant on one round only. I did not find a description of relevant cryptana-
lytic attack by now. Cryptanalysis of proposed cipher is the subject for further researches.

If we assume that, there are no practical attacks on the ciphering sequence now as well as
that other typical cryptanalysis attacks on cipher cannot be applied because the cipher is having
properties of one-time pad. The only possible attack is exhausting brute-force attack on session key.
The length of session key is variable and at least 160 bits long. Taking into account works of LEN-
STRA & VERHEUL (5) we can estimate that data encoded by means of KARHU44 can be save for
next 110 – 120 years. This range has been estimated based of extrapolation of data presented on Fig.
no. 1.

The strong side of this algorithm is also fact that the key length is variable what makes brute
force attack far harder. Random inclusion of tap sequence into the key makes brute force attack
even harder.

Described by HŁOBAŻ (17) possibility of birthday attack on pseudo one-time pad ciphers
does not concern this algorithm because hash functions are not use as means of ciphering.

In almost all block ciphers, the last block of a message being ciphered has to be padded with
random sequence of bits. This is because it is happening very seldom that length of the message is
congruent to block length. This makes good opportunity for cryptanalytical attack on the last block.
This situation is not applied to KARHU44 because presented algorithm can process last block with-
out padding what indeed improve security of proposed cipher.

2.4 Implementation

Presented algorithm was implemented as the program named KARHU44. The ciphering ob-
ject is created with two data: maximum length of a block and session key.

8

Length of blocks being ciphered can vary between one byte and defined maximum length.
Blocks which length is less than maximum one do not need to be padded.

Round key is generated with method described in section 2.2. Secret vector is initialised
based on hash of the block data being processed. Time related element Ti is generated by Master
LFSR.

Ciphering object can do encoding / decoding using all most popular modes: ECB, OFB,
CFB and CBC. In all modes except ECB, the initial vector (IV) is set-up with random numbers ob-
tained from Master LFSR. In future initial vector can be used to produce in parallel MAC as it was
described in (17).

Program reads plain text and writes cipher in binary form.
KARHU44 project has been developed by means of Borland BCB 2007 development envi-

ronment. Software has been design and coded in full according to object-oriented paradigm.

Table no. 2
Statistical evaluation of the KARHU44 algorithm.

Distribution of Comparing average value of byte against theo-
retical one of 127,5 by means of zero hypothesis

Ho: m = 127,5 bytes bits

C
ip

he
rin

g
m

od
e

Average
(m) sd (m) t

Degree of
freedom

(df)

Chi2
(df = 255)

Chi2
(df = 1)

shakespeare.txt (4082 bytes)
ECB 127,4 1,146 0,069 4081 272,132 0,344
OFB 127,8 1,159 0,259 4081 264,230 2,756
CFB 127,6 1,154 0,129 4081 209,669 0,000
CBC 128,9 1,159 1,218 4081 266,990 0,168

a.txt (4194305 bytes)
ECB 127,5 0,036 0,398 4194304 258,733 0,025
OFB 127,5 0,036 1,022 4194304 277,598 0,080
CFB 127,5 0,036 0,719 4194304 254,836 0,004
CBC 127,6 0,036 2,289 * 4194304 221,492 2,256

SZ19_0063.JPG (2693558 bytes)
ECB 127,6 0,045 1,384 2693557 240,722 0,001
OFB 127,5 0,045 0,854 2693557 275,718 1,456
CFB 127,5 0,045 0,356 2693557 238,269 0,264
CBC 127,5 0,045 0,081 2693557 247,676 0,216

mozart_sonata_p11.mp3 (3288592 bytes)
ECB 127,5 0,041 0,469 3288591 273,757 1,715
OFB 127,5 0,041 0,381 3288591 268,877 0,595
CFB 127,6 0,041 1,451 3288591 272,900 0,133
CBC 127,5 0,041 0,063 3288591 268,207 2,295

thinking_in_cpp.pdf (4547906 bytes)
ECB 127,5 0,035 1,251 4547905 240,731 2,137
OFB 127,5 0,035 0,185 4547905 251,201 0,098
CFB 127,5 0,035 0,554 4547905 258,755 0,344
CBC 127,5 0,035 1,033 4547905 278,509 0,061

publikacja.docx (1286951 bytes)
ECB 127,6 0,065 0,819 1286950 250,891 0,720
OFB 127,5 0,065 0,762 1286950 236,938 0,453
CFB 127,5 0,065 0,291 1286950 233,032 0,431
CBC 127,4 0,065 0,774 1286950 241,148 0,004

9

3. Statistical evaluation

There are several criteria to evaluate ciphering algorithms. Vast discussion and review of

methodologies can be found, for instance, in (8) (6). In addition, NIST publishes relevant recom-
mendations on own website. The final criterion is always vulnerability for cryptanalysis. The pri-
mary criterion is distribution of bytes and bits in the cipher. Actually, the problem can be state as
how far distribution of bytes and bits in the cipher differs from the uniform one. This criterion can
be used for selection of algorithms or as a rough assessment. At current stage of this project, it has
been decided to use three parameters that assess distribution of bytes in a cipher:

1. Chi2 test for bytes distribution
2. Chi2 test for bits distribution
3. Comparing average of bytes in cipher to the theoretical value of 127,5 by means of zero-

hypothesis and t-Student distribution.
4. Compressing ratio of the cipher file

Table no. 3
Compression ratio of plain and ciphered contents

Compression ratio
Cipher in respective mode File name File size

[B] Plain file
ECB OFB CFB CBC

shakespeare.txt 4 082 58,0 % 0,0 % 0,0 % 0,0 % 0,0 %
a.txt 4 194 305 99,999 % 0,0 % 0,0 % 0,0 % 0,0 %
SZ19_0063.JPG 2 693 558 0,9 % 0,0 % 0,0 % 0,0 % 0,0 %
mozart_sonata_p11.mp3 3 288 592 1,5 % 0,0 % 0,0 % 0,0 % 0,0 %
thinking_in_cpp.pdf 4 547 906 15,1 % 0,0 % 0,0 % 0,0 % 0,0 %
publikacja.docx 1 286 951 2,3 % 0,0 % 0,0 % 0,0 % 0,0 %

Points (1), (2) and (3) are standard approach to evaluation of numbers distribution. Criterion

(4) needs some consideration.
A file can be packed if it contains on various positions similar sequences of characters.

Those sequences are coded what makes resulting file compressed. In file containing ideal random
values, it is impossible to find such sequences. Therefore, the sequence of random values cannot be
compressed. For example, file A.TXT contains 4 MB of character A (see Table no. 3) and it is com-
pressed in 99,999 % while file SZ19_0063.JPG is compressed with ratio 0,9 % only, because it is
already compressed as JPEG file. In other words, if a file contains random numbers its compression
ratio should be close to zero percent. To carry out described test program WinRAR version 3.71
working in “BEST” compression mode has been used.

For the test, six files have been used:

1. SHAKESPEARE.TXT Plain text in English. File created by means
of Notepad.

2. A.TXT Plain text containing 4 MB of character A
without characters like.

3. SZ19_0063.JPG The picture in JPEG format.
4. PUBLIKACJA.DOCX MS Word document containing text in Eng-

lish and pictures.
5. MOZART_SONATA_P11.MP3 Audio file in MP3 format.
6. THINKING_IN_CPP.PDF Document in PDF format.

10

All files have been ciphered in modes listed in section 2.4. The statistical evaluation of ci-
phers is presented in Table no. 2. Distribution of bytes in file A.TXT containing 4 MB of character A
as well as in file containing cipher obtained in CFB mode is presented on Fig. no. 6. The similar
examples for audio data are presented on Fig. no. 7.

Results of tests from (1) to (3) proof – with probability 95% – that the distribution of bytes
in all tested cipher files is uniform (see Table no. 2). Average of value of bytes of cipher obtained in
CBC mode from file A.TXT slightly exceed theoretical value of 127,5. Taking into account results
of both Chi2 test it might be assumed that distribution of value of bytes should be uniform in this
case too. From Table no. 2 the conclusion that ciphering mode does not have any impact on the dis-
tribution of byte values can be drawn.

Moreover, based on results presented in Table no. 3 test (4) proofs that all cipher files contain
random values.

4. Discussion

On the base of statistical evaluation we can draw the conclusion that the proposed cipher

KARHU44 generates sequences of random numbers having uniform distribution irrespective of the
kind of clear data. The proposed cipher dissolves data well in all tested ciphering modes. Moreover,
there is no difference between ciphers obtained in these modes. Results for the A.TXT (see also Fig.
no. 6) data file are especially valuable because this is the one of the basic statistical tests in selection
of ciphers.

Fig. no. 6 - Distribution of bytes in A.XXX files (CFB mode).

The construction of KARHU44 is simple compared to other ciphers; therefore its software

implementation is secure. Blocks of information with a maximum size of 1024 TB can be processed

11

safely, but shorter blocks such as 256-512 bytes long are recommended. KARHU44 can assure se-
curity of stored data for more than the next one hundred years.

The current results of the test (this paper includes selected examples only) allow to recom-
mend the proposed algorithm to be used for long-term protection of data and content stored on any
type of electronic media. The cryptographic properties of this algorithm make cracking attempts
unfeasible within the time the prospective hacker would like to posses the targeted content.

Taking into account the results of the primary test, the KARHU44 algorithm can be pre-
sented for public discussion and testing. All comments and test results are welcome and will be
taken into account in further works. Suggestions of further research can be formulated as follows:
� To make cryptanalysis of the cipher and to investigate the use of other than LFSR random

number generators;
� To make time profiling of the current code, to optimise the code, and to investigate the pos-

sibility of hardware implementation;
� To investigate the possibility of parallel MAC calculation during ciphering in all modes, ex-

cept ECB;
� Further investigation of the behaviour of the cipher for content protection and data archiv-

ing.

Fig. no. 7 - Distribution of bytes in MOZART_SONATA_P11.XXX files (CFB mode).

References

1. La cryptographie militaire. Kerckhoffs, Auguste. 1883, Journal des sciences militaires,
Vol. IX, pp. 161-191.
2. Kerckhoffs, Auguste. 1883, Journal des sciences militaires, Vol. IX, pp. 5-83.
3. Raymond, Eric S. The Cathedral & the Bazaar. s.l. : O'Reilly, 1999. ISBN 1565927249.

12

4. Gordon, Lawrence A, et al. 2004 CSI/FBI Computer Crime and Security Survey. San
Francisco : Computer Security Institute, 2005.
5. Selecting Cryptographic Key Sizes. Lenstra, Arjen K and Verheul, Eric R. 2001, Journal
of Cryptology, p. 14.
6. Schneier, Bruce. Applied Cryptography. 2nd Edition. s.l. : John Wiley & Sons, 1966.
ISBN 0471117099.
7. Rubin, F. Rubin F., One-time pad cryptography. [Online] 13 01 1977. [Cited: 05 07
2005.] http://www.contestcen.com/crypt005.htm.
8. Bauer, Friedrich L. Sekrety kryptografii. 3rd Edition. Katowice : Helion, 2002. ISBN
8371799606.
9. Martinez, Sylvain. BUGS Dynamic Cryptography Algorithm. [Online] 19 11 2000.
[Cited: 04 07 2005.] http://www.encryptsolutions.com/
english/info/doc/bugs_tech_main.html.
10. Ritter, Terry. New Encryption Technologies for Communications Designers. [Online] 01
05 2005. [Cited: 03 07 2005.] http://www.ciphersbyritter.com/CRYPHTML.HTM.
11. Yarrow-160: Notes on the Design and Analysis of the Yarrow Cryptographic
Pseudorandom Number Generator. Kelsey, John, Schneier, Bruce and Ferguson, Niels. [ed.]
H Heyes and C Adams. s.l. : Springer-Verlag, 1999. Lecture Notes in Computer Science. p.
1758.
12. Cryptanalytic Attacks on Pseudorandom Number Generators. Kelsey, John, et al. [ed.] S
Vaudenay. Berlin / Heidelberg : Springer-Verlag, 1998. Lecture Notes in Computer Science.
pp. 168-188. ISBN 978-3-540-64265-7.
13. Szewczyk, Grzegorz. Construction and generation of cryptographic keys for ciphers
based on LFSR. In print..
14. Reinhold, Edward M, Nievergelt, Jurg and Deo, Nsrshing. Algorytmy kombinatoryczne.
Warsaw : PWN, 1985. ISBN 8301051701.
15. Szewczyk, Grzegorz. Valuation and selection of tap sequences for LFSR based random
number generator. In print..
16. Генератор псевдослучайных чисел ANSI X9.17. [Online] 17 08 2002. [Cited: 03 07
2005.] http://aforge.ibd.lv/?35.
17. Hłobaż, Artur. Bezpieczeństwo transmisji danych w systemach pomiarowych. Łódź
University of Technology. Łódź, Poland : s.n., 2008. PhD Thesis.

